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Chapter 1

Introduction

The past five years have witnessed wide spread adoption of the object-oriented

paradigm as the preferred method of software development.  Some of the most widely

touted benefits include support for better abstraction, better reuse of software, and

improved maintenance.  While not everyone agrees that object-oriented technology lives up

to the hype, most do agree that the process of developing software is enhanced by adopting

an object-oriented viewpoint.  There is a price to be paid, however.  It appears that object-

oriented programs execute more slowly and consume more memory.

Such a state of affairs is not without precedent even within a discipline as young as

computing.  The switch from assembly to high-level languages brought an increase in

productivity, but at a price.  In return for more productivity, the programmer had to

sacrifice control over certain details, such as how computations are mapped to machine

instructions.  At first, the result was a reduction in performance.  However as compiler

technology improved, much of the performance was regained.  Now few consider writing

a large program exclusively in assembly language.  Likewise, it may well be that future

programmers will do the vast majority of their programming in an object-oriented language.

For this to occur, however, more than anecdotal evidence of reduced performance needs to

be obtained and the causes of reduced performance must be identified and corrected.
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1 .1 Purpose of the Thesis

This study was undertaken to investigate the hypothesis that the performance of an

object-oriented program, as measured by its locality of reference, is less than that of a

comparable non-object oriented program.  An additional goal was to generate accurate

memory reference traces to be used in further research.

1 .2 Locality of Reference

Locality of reference is a measure of the degree to which a program clusters accesses to

information while executing.  Clustering with respect to time is called temporal locality,

while clustering with respect to space is called spatial locality.  Good temporal and spatial

locality allow optimizations which increase computer performance.

As an example, consider the memory hierarchy typical of modern computer systems.

Such systems often contain instruction and data caches which store the most frequently

used information so that the processor seldom has to wait for main memory.  Also, most

modern operating systems provide virtual memory support which allows processes to be

larger than physical memory.  Even disk controllers contain caches to reduce the time it

takes to retrieve information from secondary storage.  In each case, exploiting the locality

of reference exhibited by programs allows the performance of the system to be improved.

Without locality of reference, current levels of performance could only be obtained at a

much greater cost.

Experimental evidence that programs exhibit locality of reference began in the mid

1960's.  The work of Hatfield on program access patterns1, Denning on the working sets

1 D. Hatfield, "Experiments on Page Size, Program Access Patterns, and Virtual Memory Performance",
IBM Journal of Research and Development, Vol. 16, No. 1, January 1972, pp. 58-66.
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of processes2, and Ferrari et. al. on restructuring programs3 represent early results.

Literature dealing specifically with object-oriented technology has concentrated on the

paging behavior of Smalltalk-80 systems running on virtual memory machines.  Stamos

has shown that the locality of a Smalltalk system can be significantly improved by statically

reordering the placement of objects in virtual memory pages4.  Williams et. al. have

reported that the locality of a Smalltalk system can be further improved by using a dynamic

placement algorithm5.  These studies suggest that even with restructuring, the paging

performance of object-oriented applications still lags that of non-object oriented systems.

Recently, Calder et. al. reported that the execution characteristics of a number of C++

programs showed less locality than similar C programs6.  Although this thesis also

compares C and C++ locality characteristics, there are some of significant differences

between it and the work in reference 6.  One purpose of this study was to generate traces

for use in further research.  As a result, it was necessary to insure that the tasks performed

were comparable.  Thus, this study compares two programs which were specifically

designed to perform the same task, while the previous work compared pairs of programs

which performed similar but not identical tasks.  This study also used hardware rather than

software for trace acquisition and estimates the effect of differences in locality on system

performance.

2 P. Denning, "The Working Set Model for Program Behavior", Communications of the ACM, Vol.
11, No. 5, May 1968, pp. 323-333.

3 D. Ferrari and M. Kobayashi, "Program Restructuring Algorithms for Global LRU Environments",
Proceedings of the International Computing Symposium, 1977, pp. 277-283.

4 J. Stamos, "Static Grouping of Small Objects to Enhance Performance of a Paged Virtual Memory",
ACM Transactions on Computer Systems, Vol. 2, No. 2, May 1984, pp. 155-180.

5 I. Williams, M. Wolczko, T. Hopkins, "Dynamic Grouping in an Object Oriented Virtual Memory
Hierarchy", Proceedings of 1987 European Conference on Object-Oriented Programming, Springer-
Verlag, Paris, Vol. 276, pp. 79-88.

6 B. Calder, D. Grunwald, and B. Zorn, "Quantifying Behavioral Differences Between C and C++
Programs", TR698, University of Colorado, January 1994.
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Chapter 2

Experimental Method

2 .1 Test Programs

Since the purpose of this study was to compare the locality behavior of an object-

oriented program with a non-object oriented program, a search of the Internet was

conducted to find a program of each type that performed the same task.  No such pair was

found.  Thus, it was necessary to write at least one program to insure that differences in the

computational task would not influence the result.

One of the goals in selecting or writing a pair of programs was the desire that they

represent a "real world" application performing a "real world" task.  At the same time, the

task needed to be small enough that writing the programs did not consume an inordinate

amount of time.  The task selected was that of compiling source code for the Oberon

language.  The language is small and a model implementation of the compiler has been

published7.  Sections 2.1.1 and 2.1.2 further discuss the two programs.

The choice of implementation languages required careful consideration.  Previous

studies have used Smalltalk-80 for experimentation because of its flexibility and pure

object-oriented approach.  However, there appears to be few investigations which have

chosen more traditional compiled languages.  For this reason, the C and C++ languages

were chosen for use in this study, both because of their similarity and because of their wide

spread use in industry.  An additional benefit of this choice is the existence of compilers

which compile both languages.  Having a common compiler reduces the possibility that

7 N. Wirth and J. Gutknecht, Project Oberon:  The Design of an Operating System and Compiler,
Addison-Wesley ACM Press, New York, New York, 1992.
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differences in the result are due to differences in the code generation and optimization

engines.

Although there are many compilers that process both C and C++, the GNU gcc v2.6.0

compiler was chosen (primarily for economic reasons as the test hardware had neither an

ANSI C nor a C++ compiler installed). The GNU loader from binutils v2.4 was also

installed because the loader supplied by the hardware vender had troubles with the C++

object files. The GNU C++ library, libg++ v2.6, was compiled to support the C++

program.  All other libraries and tools were those distributed with the operating system.

2.1 .1 The C Program

The C program is a direct translation of the source code for the Oberon compiler created

by Niklaus Wirth.  Although a detailed analysis of the program is beyond the scope of this

work, a general description of the design and implementation will allow a better discussion

of the C++ version in the next section.

The published Oberon compiler generates machine code for the Oberon environment8

running on a Ceres workstation with a National Semiconductor 32000 CPU.  The compiler

is written in Oberon and employs a recursive descent approach to parsing.  The basic data

structures are simple and the style is typical of current programming practice.  Except for

the need to modify the code to take into account the differences in byte ordering (the

original code was for a little-endian machine while the test machine is big-endian), the

translation was straight forward.

8 The Oberon environment is available by anonymous ftp from neptune.inf.ethz.ch and can be installed
on several popular platforms.  The source code for the system as documented in Project Oberon:  The
Design of an Operating System and Compiler is also available from the same site.
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2.1 .2 The C++ Program

In keeping with the goals of this study, an attempt was made to exaggerate the potential

differences in locality that occur from applying an object-oriented approach over a more

traditional one.  Thus as a design objective, the C++ program makes full use of object-

oriented techniques as much as possible.  The example of the Smalltalk-80 language and

environment was followed in this regard.  Whenever two classes of objects were

conceptually distinct, two classes were created even if the class would only have a single

member.  In addition, all methods were made virtual in order to accentuate the effects of

polymorphic dispatch.  This design philosophy resulted in a proliferation of classes and

objects.  Such adherence to a pure object-oriented approach may be unwise in a commercial

C++ environment, but was done to exaggerate the reduction in locality resulting from the

adoption of the object-oriented viewpoint.  It should also be noted that, like Smalltalk-80,

only single inheritance was used in spite of the capability of multiple inheritance in C++.

As an example of the proliferation of classes, consider the various types of symbols

shown in the OSA Object Relationship Model (ORM)9 of figure 1.  The specializations of

the Number object class were created because each number requires a different data

representation.  Contrast this with a typical design in which a single Symbol object class

would be created and variant record type used to distinguish between the actual contents of

the specializations.

9 In an OSA Object Relationship Model, rectangles represent classes of objects, while the lines between
object classes represent the sets of relationships between objects belonging to those classes.  The
triangular symbols on the lines between object classes indicates a generalization/specialization
relationship.  In this diagram, the Integer class is a specialization of the Natural class, which is a
specialization of the Symbol class.  For more information about OSA, see Object-Oriented Systems
Analysis:  A Model-Driven Approach by Embley, Kurtz, and Woodfield.
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Figure 1: ORM of Oberon symbols

Symbol

Char Identifier Number

FloatingPoint

Real LongReal

Natural

ShortInt Integer LongInt

Special StringKeyword

Note that the although the Special and Keyword object classes could have been

specialized further for each special symbol or specific keyword, instances of those object

classes used a tag attribute to specify the specialization instead.  This was motivated by the

fact that no additional data was needed by a specialization.

In this design, the scanner can preserve the necessary information about the symbols

read from the input file in specializations of the Symbol class.  However, the compiler must

know what kind of symbol the instance represents (i.e., to which class does the

specialization belong) in order to access that information and continue the compilation

process.  This was done by enumerating each of the possible specializations in the head of

each generalization/specialization relationship.  A polymorphic method is also defined for

the class and each specialization is required to redefine that method to return the correct

enumeration.  The compiler calls the method and acts upon the result as appropriate.  This

technique is shown in the code fragment of figure 2.
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Figure 2: Determining the class of a specialization

class Symbol {

   public:

      enum SymbolClass {

         Undefined, Number, String, Identifier, Special, Keyword, Char

      };

      virtual SymbolClass GetSymbolClass(void) const;

};

Symbol::SymbolClass Symbol::GetSymbolClass(void) const {

   return (Undefined);

}

class Keyword : public Symbol {

   public:

      enum KeywordClass {

         Undefined, DIV, MOD, OR, ... 

      };

      Keyword(KeywordClass keywordClass);

      virtual SymbolClass GetSymbolClass(void) const;

      virtual KeywordClass GetKeywordClass(void) const;

   private:

      KeywordClass keyword;

};

Symbol::SymbolClass Keyword::GetSymbolClass(void) const {

   return (Symbol::Keyword);

}

Keyword::KeywordClass Keyword::GetKeywordClass(void) const {

   return (keyword);

}

/* As an example... */

if (nextSymbol->GetSymbolClass() == Symbol::Keyword && 

   ((Keyword *) nextSymbol)->GetKeywordClass() == Keyword::OR) {

   /* do something */

}

The Oberon language relies upon a garbage collector to free objects that have been

dynamically allocated on the heap.  C and C++, on the other hand, leave the reclamation of

memory up to the programmer.  Such differences in philosophy lead to rather different

styles of programming.  For this study, the garbage collection style was assumed.

Although, the type of garbage collector used can have a big impact on the locality of the
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program10, once garbage collection is assumed the style of the program does not vary

significantly.  Of the possible types of garbage collectors, the "null collector" was selected

as the most simple.  When objects are no longer needed, they are simply ignored and the

space they occupy is not reclaimed until the program terminates.  This results in larger

memory requirements for the program.

It is expected that not reclaiming objects will lead to increased heap dilution and a

reduction in the locality of reference.  Since both programs employ a null collector,

differences in locality caused by dilution will only become evident if there is a vast

difference in the number of objects allocated on the heap.  The C++ program allocates

objects to excess (while the C version does not) and therefore should show additional

impact due to heap dilution.  This is in keeping with the attempt to exaggerate the effect of

adopting an object-oriented approach.

Note, the choice of implementation algorithms is likely to have a large effect on locality.

As the thrust of this study was not a comparison of algorithms, the C++ program employed

the same algorithms as the C program.  For example, both the C and C++ programs used a

recursive decent approach to parsing.  However, the C++ program used a hierarchy of

classes representing constructs from the grammar, rather than a set of recursive procedures.

Instances of these classes were created and methods called as appropriate to parse the input.

2.1 .3 Program Input

Memory access characteristics of programs are influenced by the input files processed.

Thus, the input files used in this study should be of varying lengths and complexity.  The

source files chosen were those files from the Oberon environment necessary to implement

the compiler itself.  These included some of the source files for the operating system.

While the characteristics of the input files were not thoroughly investigated, nearly every

construct of the Oberon language is represented.

10 R. Courts, "Improving Locality of Reference in a Garbage-Collecting Memory Management System",
Communications of the ACM, Vol. 31, No. 9, September 1988, pp 1128-1138.
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Table 1: Files used as input to the test programs

File Name Classification Lines Bytes

Compiler.Mod Compiler 971 30,006

Display.Def† Operating System 87 2,104

FileDir.Mod Operating System 368 11,264

Files.Mod Operating System 449 13,382

Fonts.Mod Operating System 118 3,163

Input.Mod Operating System 70 2,079

Kernel.Def† Operating System 41 1,166

MenuViewers.Mod Operating System 226 7,947

Modules.Mod Operating System 229 7,317

OCC.Mod Compiler 611 19,056

OCE.Mod Compiler 975 32,009

OCH.Mod Compiler 564 18,256

OCS.Mod Compiler 317 9,440

OCT.Mod Compiler 590 19,427

Oberon.Mod Operating System 488 13,218

Reals.Def† Operating System 39 778

TextFrames.Mod Operating System 867 31,141

Texts.Mod Operating System 842 26,606

Viewers.Mod Operating System 248 7,334

Total 8,100 255,693

† Definitions only, the separate implementation is in assembly language

Table 1 presents a summary of the files used as input to the two programs.  Since the

prefix of each file name is unique, only the prefix will be used when referring to the input

files throughout the rest of the study.
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2 .2 Trace Acquisition

Memory reference traces can be acquired by software or hardware means.  Each has its

advantages and disadvantages.  In the software approach, instructions are inserted into the

instruction stream to log memory references11, 12, 13.  These instructions can be

generated by a modified compiler or linker, or by special post-processing of the executable.

The primary advantage of the software approach is greater flexibility and relatively low

cost.  The disadvantages are slow execution (large time dilation) and the inability to obtain

accurate timing information due to the presence of the extra instructions (which change the

execution history and cause the instruction cache to be polluted).

In the hardware approach, memory references are obtained by either changing the

microcode of the processor14 or by sensing the signals coming from the processor.  Both

approaches suffer less time dilation than the software approach.  However, both

approaches are also more costly.  The microcode approach is not always possible because a

processor's instructions are hard-wired or because there is not enough control store for the

modification to be performed.  Even if the microcode can be modified, it is likely that

instruction timings will be affected.  As for sensing the signals coming from the processor,

not all the information pertaining to the processor's state may be available.

It was decided that the traces would be acquired with hardware because of the lower

time dilation, the non-obtrusive nature of the technique (resulting in greater accuracy), and

the desire to acquire timing information.  An additional inducement was the availability of a

11 A. Borg, R. Kessler, and D. Wall, "Generation and Analysis of Very Long Address Traces",
Proceedings of the 17th International Symposium on Computer Architecture, ACM, Seattle, WA,
May 28-31 1990, pp 270-279.

12 J. Larus and T. Ball, Rewriting Executable Files to Measure Program Behavior, Technical
Report 1083, Department of Computer Science, University of Wisconsin, March 1992.

13 S. Son, "Senior Project Report:  Inline Memory Reference Tracing System", Senior Project Technical
Report, Department of Electrical and Computer Engineering, Brigham Young University, May 1991.

14 A. Agarwal, R. Sites, and M Horowitz, "ATUM:  A New Technique for Capturing Address Traces
Using Microcode", Proceedings of the 13th International Symposium on Computer Architecture,
IEEE, 1986, pp. 119-127.
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hardware trace acquisition system within the university.  The heart of the system is the

BYU Address Collection Hardware (BACH)15.

BACH was developed by the Electrical and Computer Engineering department to enable

accurate traces to be made of program, operating system, and I/O references.  It has been

used to show that cache performance can be over-estimated when operating system

references are ignored16.

The trace collection system, shown in figure 3, consists of three parts:  the test

platform, the address collection hardware (BACH), and the extractor.  The platform is the

machine which will run the program and whose execution is to be monitored.  BACH is

primarily a small control unit which regulates the acquisition and placement of memory

addresses into a very large buffer.  The extractor is another computer which accepts buffers

from BACH and stores them on disk to await further processing.

Figure 3: The hardware data acquisition system

Test
Platform

BACH Extractor
Control & Data Control & Data

Currently there are two supported platforms:  a SPARCstation 1+ running SunOS

v4.1.2 and a i486 based PC clone running Unixware.  Although traces can be obtained

using either platform, the SPARCstation was chosen for three reasons.  First, the

SPARCstation has an external (off-chip) cache that enables virtual memory addresses to be

15 K. Flanagan, B. Nelson, J. Archibald, and K. Grimsrud, "Bach:  BYU Address Collection Hardware,
The Collection of Complete Traces", Proceedings of the 6th International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation, 1992, pp. 128 - 137.

16 K. Grimsrud, J. Archibald, R. Frost, K. Flanagan, and B. Nelson, "Estimation of Simulation Error
Due to Trace Inaccuracies", Proceedings of the 26th Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove, October 26-28, 1992.
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captured.  This allows simulations to be performed independent of any paging mechanism.

Second, the i486 has a 16 byte prefetch buffer which would have skewed the results of the

cache simulation and reduced its effectiveness for non-Intel processors.  Finally, the i486

machine was being used to collect traces while benchmarking a commercial database and

therefore was not available for use.

The only modifications made to the SPARCstation to enable trace collection were the

addition of a daughter card between the CPU and the mother board, and a slowing of the

the clock speed to 20 MHz in order to not overwhelm the BACH unit.  The daughter card

allowed the BACH unit to monitor and log the signals on the CPU pins that comprise the

processor's external state.  For every change in the external state, the BACH unit recorded

an entry containing the number of cycles since the last entry, the address, the data involved,

the size of the data read or write, and the processor mode (supervisor or user).  In addition,

BACH records additional information which is not germane to this discussion.  For a more

complete explanation of the BACH system, the reader is referred to the design report in

reference 15.

2 .3 Analysis Technique

The traditional approach to quantifying locality of reference is to count the number of

virtual memory page faults that occur during execution17.  Temporal locality is accounted

for since consecutive accesses to the same memory location will not cause a page fault.

Spatial locality is also accounted for since accesses to addresses closely surrounding the

faulting address will not cause a page fault.  In addition, phases of high and low locality

can be distinguished by observing the page fault rate or working set size as a function of

time.

The primary disadvantage of using the page fault rate as a metric is its large granularity.

Typical page sizes are either 1024 or 4096 bytes, while average object sizes are

17 M. Maekawa, A. Oldehoeft, and R. Oldehoeft, Operating Systems:  Advanced Concepts, Benjamin
Cummings, Menlo Park CA, 1987, Chapter 5.
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significantly smaller (around 20 to 64 bytes18, 19, 20).  Thus it may be difficult for a page

fault metric to be sufficiently sensitive to the execution behavior of an object-oriented

program.  A much finer granularity is needed to insure that intervals of object-oriented

locality are measured.

A similar approach which eliminates this problem is to count the number of cache

misses during execution.  Cache miss rates exhibit the same properties as page fault rates,

but at a much finer granularity.  Typical first level CPU caches have line sizes (the cache

counterpart to virtual memory page sizes) of around 32 bytes and thus approximate the size

of an average object.  Caches are also included on most computer systems, making cache

performance an important consideration.  Thus, cache miss rates will be used to measure

locality in this study.

The cache configurations of recent high performance microprocessors appear to be

converging.  As an example, consider the caches from the DEC Alpha21 processor, the

Intel Pentium22 processor, and the PowerPC 60323 processor (a joint venture between

IBM, Apple, and Motorola).  As table 2 shows, each of these processors has separate

instruction and data caches.  Each of the processors has separate 8 kilobyte instruction and

data caches with a 32 byte lines and 2-way set associativity (with the exception of the Alpha

processor which has direct-mapped caches of an unreported line size).

18 A. Goldberg and D. Robson, Smalltalk-80:  The Language and Its Implementation, Addison-Wesley,
Reading, MA, 1983, pg. 659.

19 D. Ungar, "Generation Scavenging:  A Non-Disruptive, High Performance Storage Reclamation
Algorithm", ACM SIGSOFT/SIGPLAN Proceedings of the Software Engineering Symposium on
Practical Software Development Environments, Pittsburgh, PA, May 1984, pp 157-167.

20 G. Krasner (Ed.), Smalltalk-80:  Bits of History, Words of Advice, Addison-Wesley, Reading, MA,
1983, pp. 94, 96.

21 Z. Cvetanovic and D. Bhandarkar, "Characterization of Alpha AXP Performance Using TP and SPEC
Workloads", Proceedings of the 21st International Symposium on Computer Architecture, Chicago,
IL, April 18-21 1994.

22 Pentium Processor User's Manual, Volume 1:  Pentium Processor Data Book, Intel, Mt. Prospect,
IL, 1994, pg 3-13.

23 B. Burgess, N. Ullah, P. Van Overen, and D. Ogden, "The PowerPC 603 Microprocessor",
Communications of the ACM, Vol. 37, No. 6, June 1994, pp. 34-41.
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Table 2: Representative state of the art caches

Instruction Data

Processor Size (K) N-Way Line (bytes) Size (K) N-Way Line (bytes)

PowerPC 603 8 2 32 8 2 32

Pentium 8 2 32 8 2 32

DECchip 21064 (Alpha) 8 1 † 8 1 †

† Not reported

Based on the information in table 2, the analysis of the locality characteristics of the two

programs in this study will be performed with separate instruction and data caches of

8 kilobytes each and a line size of 32 bytes.  Both direct-mapped and 2-way set associative

caches will be simulated.

Even though they are indicative of the locality of a reference stream, miss rates do not

directly indicate system performance.  If the speeds of CPU and memory are similar, the

cost of a cache miss is small and does not effect system performance.  If the speeds are

dissimilar, a cache miss will have a detrimental effect.  Thus to estimate system

performance, memory and CPU cycle times must also be considered.

One parameter that combines the miss rate and cycle times is the effective access time -

the average amount of time necessary to resolve a reference.  It is defined to be the time to

service a cache hit, plus the time to service a cache miss on the average (i.e., miss time

scaled by the average miss rate as shown in equation 1).

effective access time = hit time + miss rate * miss time (1)

The hit time is assumed to be one processor cycle and is called processor latency.  The

miss time is assumed to be one memory cycle and is called memory latency.  Substituting

15



these values into equation 1 and dividing both sides by processor latency yields a parameter

known as the access multiplier.

access multiplier = 1 + miss rate * memory latency / processor latency(2)

The access multiplier is the average number of processor cycles require to resolve a

memory reference.  If the ratio of memory latency to processor latency is held constant,

then system performance is a function of the miss rate.  Conversely, the performance of

different system designs can be evaluated if miss rate is assumed.

Table 3 lists memory to processor latency ratios for each of the processors in table 2.

An entry is also included for 1 GHz processors expected in the near future.  Processor

latency is computed as one over the clock speed in hertz.  Memory latency is assumed to be

340 ns based on the value reported in reference 21.  The use of a single value to compute

the latency ratio is possible because the speed of memory is not expected to changing

significantly in the future24.  The results presented in chapter 3 use the range of memory

to processor latency ratios from table 3 to estimate the performance impact of adopting an

object-oriented approach.

Table 3: Representative system latency ratios

Latency

Clock Speed Memory† Processor Latency Ratio

Processor (MHz) (ns) (ns)

PowerPC 603 80 340.0 12.5 27.2†

Pentium 90 340.0 11.1 30.6†

DECchip 21064 (Alpha) 200 340.0 5.0 68.0

Future processors 1000 340.0 1.0 340.0†

† Assuming the memory latency reported for the Alpha

24 J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, Morgan Kaufmann
Publishers Inc., 1990, pp 426-427.
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Chapter 3

Experimental Results

Traces were made of the operating system and test programs while executing each of

the input files.  Each trace was then filtered to leave only user references.  This eliminated a

potential bias caused by tracing the operating system, the design and implementation of

which are unavailable.  Characteristics of the user traces are summarized in section 3.1 and

results of the cache simulations are presented in section 3.2.

3 .1 Trace Statistics

Traces are frequently summarized by statistical characterizations of the reference

stream.  To perform this study, over 600 million user and system references (consuming

over 1.2 billion CPU cycles) were acquired.  Of these, only 311 million user references are

of interest in this study.  The statistical properties of the traces are shown in tables 4 - 6.

Table 4 shows the percentage of operating system and user references made by the

programs.  Since only user references are germane, the data shown here will not be

extensively discussed.  However, it is interesting to note that the C program spent more

time in the operating system than did the C++ program.  This may be due to differences in

the system calls made, but was not investigated further since only user references were of

interest.
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Table 4: User and OS statistics for the traces

C C++

Input File % OS % User % OS % User

Compiler † † 24.76 75.24

Display 84.05 15.95 77.49 22.51

FileDir 69.01 30.99 39.65 60.35

Files 66.85 33.15 41.58 58.42

Fonts 76.52 23.48 57.07 42.93

Input 84.56 15.44 75.12 24.88

Kernel 91.16 8.84 86.37 13.63

MenuViewer 67.11 32.89 46.61 53.39

Modules 69.04 30.96 44.73 55.27

Oberon 71.45 28.55 39.48 60.52

OCC 61.89 38.11 36.31 63.69

OCE 48.14 51.86 30.67 69.33

OCH 59.81 40.19 35.38 64.62

OCS 66.10 33.90 40.08 59.92

OCT 61.93 38.07 28.11 71.89

Reals 91.97 8.03 88.82 11.18

TextFrames 62.95 37.05 36.10 63.90

Texts 63.86 36.14 29.62 70.38

Viewers 75.18 24.82 47.79 52.21

Mean 70.64 29.36 48.94 51.06

Standard Deviation 11.48 11.48 19.61 19.61

† The OS part of this trace was corrupted by the overflow of a serial port buffer.

Another observation concerns the large overhead for starting a process.  This can be

seen in both the C and C++ traces as a higher percentage of operating system references

during the compilation of short input files such as Display, Input, Kernel, or Reals.
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Table 5: Traces statistics for the C program

Data

Input File References % Instruction % Data % Reads % Writes

Compiler 17,468,155 88.03 11.97 10.07 1.90

Display 905,216 87.09 12.91 10.70 2.21

FileDir 4,961,940 86.63 13.37 11.03 2.33

Files 5,665,848 86.71 13.29 10.99 2.30

Fonts 2,058,187 86.53 13.47 11.03 2.45

Input 1,060,361 86.61 13.39 10.97 2.41

Kernel 789,254 86.09 13.91 11.67 2.23

MenuViewer 4,746,409 86.23 13.77 11.27 2.50

Modules 3,535,394 86.99 13.01 10.78 2.23

Oberon 8,162,868 86.85 13.15 11.01 2.14

OCC 10,464,177 87.92 12.08 10.19 1.89

OCE 13,923,362 87.28 12.72 10.50 2.23

OCH 8,131,556 87.06 12.94 10.70 2.25

OCS 5,202,660 86.74 13.26 10.90 2.36

OCT 9,314,356 87.77 12.23 10.34 1.89

Reals 560,641 85.87 14.13 11.67 2.46

TextFrames 15,722,362 86.86 13.14 10.93 2.21

Texts 14,224,160 87.20 12.80 10.69 2.11

Viewers 3,199,647 86.31 13.69 11.30 2.39

Mean 86.88 13.12 10.88 2.24

Standard Deviation 0.59 0.59 0.43 0.19

Total References 130,096,553

19



Table 6: Traces statistics for the C++ program

Data

Input File References % Instruction % Data % Reads % Writes

Compiler 27,067,449 83.98 16.02 13.26 2.76

Display 1,218,180 82.29 17.71 14.03 3.67

FileDir 7,328,060 82.26 17.74 14.17 3.58

Files 8,585,780 82.24 17.76 14.14 3.62

Fonts 2,798,234 82.96 17.04 13.44 3.60

Input 1,346,708 82.40 17.60 13.96 3.64

Kernel 604,887 82.23 17.77 14.02 3.74

MenuViewer 6,750,399 82.58 17.42 13.67 3.76

Modules 5,242,678 82.70 17.30 13.93 3.37

Oberon 10,617,578 83.16 16.84 13.59 3.25

OCC 12,310,304 83.89 16.11 13.34 2.77

OCE 23,306,974 82.64 17.36 14.00 3.36

OCH 12,770,470 82.56 17.44 14.01 3.43

OCS 7,427,120 82.86 17.14 13.77 3.37

OCT 13,746,056 83.40 16.60 13.75 2.86

Reals 431,450 81.62 18.38 14.13 4.25

TextFrames 13,819,077 82.89 17.11 13.64 3.47

Texts 21,632,272 83.07 16.93 13.68 3.25

Viewers 4,497,339 81.90 18.10 14.22 3.88

Mean 82.65 17.35 13.86 3.49

Standard Deviation 0.55 0.55 0.26 0.35

Total References 181,501,015
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A comparison of the total number of user references from tables 5 and 6 shows that the

C++ program produced 40 percent more references than the C program.  Tables 5 and 6

also show that the percentage of instruction and data references exhibit similar

characteristics.  In both cases, most of the memory references were instruction fetches.  A

high percentage of instruction references may be due in part to the RISC heritage of the test

machine.  In the RISC philosophy, operands must be loaded into registers before use.  As

long as operands can be found in registers, continued program execution occurs without

further data references.  Contrast this with the CISC tendency to make addressing modes

orthogonal to the operation being performed by the instruction.  One would expect to have

a higher proportion of instruction accesses for a RISC architecture than a CISC

architecture.  The results support this conclusion.

Another characteristic of both programs is the proportion of data reads and writes.  As

tables 5 and 6 show, the frequency of read references is four to five times the frequency of

write references.  Only 2.24 to 3.49 percent of all references write to a memory location.

This suggests that increasing the effective speed of memory reads will improve the overall

performance of the system for these programs.

The statistics show another important difference in the programs.  Comparing the

percentages from tables 5 and 6 shows that the C++ program makes 4.23% less instruction

references than the C program, while the percentage of data references is higher by the

same amount.  The percentage of data read references of the C++ program is also lower

than the C program by nearly 3%.  Overall the C++ program makes 1.25% less read

references than the C program.  The standard deviations reported for each column indicate

that these differences are statistically significant.
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3 .2 Cache Miss Rates

Table 7 shows that mean cache miss rates for the two programs differ substantially.  In

fact, the instruction miss rate of the C++ program is 2 to 3 times that of the C program,

while the data miss rate is twice as high for the C++ program.  The difference in instruction

cache performance is similar to that reported by Calder et. al. in reference 6.  However,

unlike their work which reported no noticeable difference, a comparison of the data cache

performance of the two programs indicates that data locality did suffer when adopting an

object-oriented style.  The increase in data cache miss rate is around 3%, which is nearly as

much as the data miss rate of the C program to begin with.

Table 7: Mean cache miss rates in percent

C C C++ C++
Associativity 1 2 1 2

Instruction Mean 2.97 1.26 5.23 3.98
Std Dev 0.49 0.19 0.71 0.72

Data Mean 3.50 2.51 6.50 5.24
Std Dev 1.33 1.39 1.51 1.50

Figures 4 and 5 also show that the cache miss rate of the C++ program was higher than

the C program without exception.  It can also be seen that the cache miss rate is dependent

on the input.  For example, the data miss rates of each program are higher for the Compiler

traces than for the FileDir traces.  In general, the effect of the input file on the miss rate is

the same for both programs.  This supports the assumption made in section 2.1.3 that the

locality of these programs would be dependent on the input.
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Another interesting observation can be made about the change in miss rate that occurs

with increased associativity.  As cache associativity increases from direct-mapped to 2-way

set associative, table 7 reports that the miss rate for the C program decreased from 2.97%

to 1.26% (instruction cache) and from 3.50% to 2.51% (data cache). This represents a

decrease in the miss rate of 57.6% and 28.3% respectively.  The miss rates for the C++

program decreased from 5.23% to 3.98% (instruction cache) and from 6.50% to 5.24%

(data cache), representing a decrease of 23.9% and 19.4% respectively.  Thus for the

caches simulated here, increased associativity does not benefit the C++ program as much as

it does the C program.  It is not known whether this trend continues for higher

associativities or cache sizes other than 8 kilobytes.

As was discussed in section 2.3, the effective access time and related access multiplier

are more indicative of system performance than cache miss rate alone because they include

the effect of memory speed upon a cache miss.  Figures 6 and 7 compare the access

multipliers of the C and C++ programs as a function of latency ratio.  Table 8 also presents

the results in tabular form.  In the following paragraphs, the results for direct-mapped

caches will be discussed.  The results for 2-way set associative caches are similar.

Table 8: Access multipliers corresponding to figures 6 and 7

Access Multiplier

Direct-mapped 2-way set associative

Latency Ratio C C++ C C++

Instruction 30 1.89 2.57 1.38 2.19

68 3.02 4.56 1.86 3.70

340 11.09 18.78 5.28 14.52

Data 30 2.05 2.95 1.75 2.57

68 3.38 5.42 2.70 4.57

340 12.91 23.09 9.52 18.83
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Figure 6: Access multiplier vs latency ratio (direct-mapped, 32 byte lines)
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Figure 7: Access multiplier vs latency ratio (2-way set associative, 32 byte lines)
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Assuming any architecture with a latency ratio of 68 (similar to the Alpha chip) and

assuming the same program miss ratios measured in this study, the access multiplier for the

C++ program would be 4.56 for instructions and 5.42 for data.  The access multiplier for

the C program would be 3.02 and 3.38 for instructions and data respectively.  Based on the

trace compositions reported in tables 5 and 6, the composite access multipliers for the two

programs would be 4.71 for the C++ program and 3.07 for the C program.  Comparing

these access ratios shows that the C++ program takes 53.5% longer to access a memory

location on the average.  In other words, the C++ program would be expected to take over

50% longer to accomplish the same task.  Few applications can afford such a performance

penalty.

Although the performance difference is significant for current systems, the results are

even more pronounced when processor clock speeds increase.  As clock speeds approach

1 GHz, the composite access multiplier of the C++ program becomes 19.53, while the

composite access multiplier of the C program is 11.33.  The C++ program would be

expected to take 72.4% longer.  Having to compromise performance by this amount when

adopting object-oriented technology is likely to be unacceptable for most applications.
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Chapter 4

Conclusions

This study has shown that the locality of reference characteristics of an object-oriented

program written in C++ differ significantly from that of a similar program written in C.

The C++ program required 40% more references to accomplish the same task.  Assuming

the latency ratio of a 200 MHz processor and assuming the mean cache miss rates from this

study, it is estimated that the C++ program will execute over 50% longer than its C

counterpart.  As processor speeds increase relative to memory speeds, the effect becomes

more pronounced.  Such performance penalties are unacceptable for many applications.

Future research should concentrate on understanding the reasons for the reduction in

locality and investigate ways to minimize the effects of reduced locality on performance.

One fruitful area of research would be to examine how the code generated by a compiler

impacts the locality of reference.  It would be particularly instructive to know to what extent

current implementation techniques for object-oriented concepts like polymorphism affect

locality.  In addition to compilation, the process of linking needs to be revisited.  Previous

studies have shown that restructuring a program can have a drastic effect on locality.

However, little work appears to have been done on linking object-oriented programs to

improve cache performance.  Such a study would yield important information with

immediate applicability to current object-oriented systems.

Because an attempt was made to exaggerate the effects of adopting an object-oriented

style, it is likely that normal design practice will yield programs with better locality than the

C++ program used in this study.  The degree to which such programs exhibit worse

locality than their C counterparts is likely to be dependent on the specific design and
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implementation techniques used.  It is expected that nearly all C++ programs developed in a

production environment should exhibit locality characteristics between the two programs

used in this study.  However, the effect of specific design and implementation policies on

locality remains to be investigated.

Last of all, this study was limited to one application domain - namely that of the

compilation of programs.  Before the results shown here are assumed applicable to object-

oriented programs in general, programs representative of other application domains and

implemented in other languages need to be studied.
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Shows the effect of page size, number of resident pages, and different
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* R. Courts, "Improving Locality of Reference in a Garbage-Collecting Memory
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garbage collection.  Tries to exploit locality of reference to improve garbage

collection.
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Model-Driven Approach, Yourdon Press, Englewood Cliffs, New Jersey, 1992.

Describes a formal, model-oriented approach to object-oriented analysis and

modeling.  An OSA object relationship model was presented in figure 1.

* D. Ferrari, "The Improvement of Program Behavior", Computer, Vol. 9, No. 11,

November 1976, pp 39 - 47.

Describes several algorithms for restructuring programs.  An order of

magnitude improvement in page fault rate was observed in some cases.
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* K. Flanagan, A New Methodology for Accurate Trace Collection and its Application to

Memory Hierarchy Performance, PhD Dissertation, Brigham Young University,

Department of Electrical and Computer Engineering, 1993.

Discusses the design of the BACH system and its application to caches.

* K. Flanagan, B. Nelson, J. Archibald, and K. Grimsrud, "Bach:  BYU Address

Collection Hardware, The Collection of Complete Traces", Proceedings of the 6th

International Conference on Modeling Techniques and Tools for Computer

Performance Evaluation, 1992, pp 128 - 137.

The design and implementation of the BYU Address Collection Hardware.

* K. Flanagan, B. Nelson, J. Archibald, and K. Grimsrud, "Incomplete Trace Data and

Trace Driven Simulation:  A Case Study", Proceedings of the International Workshop

on Modeling, Analysis and Simulation of Computer and Telecommunications Systems

MASCOTS, SCS, 1993, pp 203-209.

Traditional cache simulations can be off by as much as 100 times by

neglecting the effect of operating system references.

* K. Grimsrud, Quantifying Locality, PhD Dissertation, Brigham Young University,

Department of Electrical and Computer Engineering, 1993.

Presents a formal definition of both temporal and spatial locality and their

interaction as a 3-D locality surface, discusses a practical algorithm for

computing the locality surface, and correlates features of the locality surface to

constructs of programming languages.  Very thought provoking.
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* K. Grimsrud, J. Archibald, M. Ripley, K. Flanagan, and B. Nelson, "Bach:  A

Hardware Monitor for Tracing Microprocessor-Based Systems", Microprocessors and

Microsystems, Vol. 17, No. 8, October 1993.

A description of the BACH system implementation for MC68030, i486, and

SPARC microprocessors.

* D. Grunwald, B. Zorn, and R. Henderson, "Improving the Cache Locality of Memory

Allocation", SIGPLAN Notices, ACM, Vol. 28, No. 6, June 1993, pp 177-86.

Presents the locality of reference and performance characteristics of several

dynamic memory allocations algorithms evaluated by trace-driven simulation.

The characteristics of allocators with bad locality are discussed.

* D. Hatfield, "Experiments on Page Size, Program Access Patterns, and Virtual

Memory Performance", IBM Journal of Research and Development, Vol. 16, No. 1,

January 1972, pp 58 - 66.

Presents results that indicate that for programs that make highly localized

use of memory space, increasing (not reducing) the page size increases

performance as hardware and software page management overhead decreases.

This is compatible with the work done by Coffman and Varian.

* D. Hatfield and J. Gerald, "Program Restructuring for Virtual Memory", IBM

Systems Journal, Vol. 10, No. 3, 1971, pp 168 - 192.

Describes a technique for re-ordering to increase paging performance.
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* M. Hill, "A Case for Direct-Mapped Caches", Computer, IEEE, Vol. 21, No. 12,

December 1988, pp 25-40.

Points out that although increased associativity gives lower miss rates, the

implementation of associativity slows the speed of the cache (thereby negating

some of the benefit of higher associativity for first level caches).  Also points

out that second level caches may benefit from higher associativity.  The

predicted size at which a direct-mapped cache becomes faster is based on miss

rates substantially lower than those found in this study.

* J. Larus and T. Ball, Rewriting Executable Files to Measure Program Behavior,

Technical Report 1083, Department of Computer Science, University of Wisconsin,

March 1992.

Discusses the capture of program behavior by rewriting executables.  This

technique was used by Calder et. al. in their comparison of the locality

characteristics of a set of C and C++ programs.

* E. Lau, Performance Improvement of Virtual Memory Systems, UMI Research Press,

Ann Arbor, Michigan, 1982.

Discusses ways to improve performance of virtual memory systems.  Gives

FFT as an example of a program with spatial locality, but not temporal locality

(accesses subsets of locations in close spatial proximity, but those subsets

change quickly with time).

Also suggests (on page 89) that forward branches are more likely than

backward branches.  This is contrary to what I remember seeing (although I

cannot find any references).
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* A. Madison and A. Batson, "Characteristics of Program Localities", Communications

of the ACM, Vol. 19, No. 5, May 1976, pp 285 - 294.

Discusses the concept that programs exhibit a hierarchy of localities.  Gives

a definition of bounded locality intervals and an algorithm for calculating them.

Would be interesting to see if bounded locality intervals could be determined

from memory reference traces rather than the high-level Algol traces used in

their work.

* J. Schemer and G. Shippey, "Statistical Analysis of Paged and Segmented Computer

Systems", IEEE Transactions on Computers, Vol. EC-15, No. 6, December 1966,

pp 855 - 863.

Applies statistical analysis to analyze paged and segmented memory via

simulation.  Defines "page reference distribution functions" for reference strings

of essentially random, sequential, or exponential behavior.

* A. Smith, "Two Methods for the Efficient Analysis of Memory Address Trace Data",

IEEE Transactions on Software Engineering, Vol. SE-3, No. 1, January 1977,

pp 94-101.

Discusses two techniques for reducing the size of long reference strings,

along with an analysis of the inaccuracy resulting from the reduction.

These techniques may not be necessary anymore due to the dramatic

increase in memory size and computational power of workstations.  For

example, the traces taken in support of the work reported in this paper were

rather long (over 600 million references), yet they did not require reduction.
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* S. Son, "Senior Project Report:  Inline Memory Reference Tracing System", Senior

Project Technical Report, Department of Electrical and Computer Engineering, Brigham

Young University, May 1991.

Discusses a software-based approach to trace generation.  The assembly

output of a C compiler is annotated to log the information necessary to construct

the desired trace.  Post-processing removes the offset bias of the logging code.

* J. Spirn, Program Behavior:  Models and Measurements, Operating and Programming

Systems Series, Elsevier, New York, 1977.

Presents a general overview of modelling program behavior and reviews the

LRU, OPTIMAL, and WORKING SET models.

* J. Spirn, "Distance String Models for Program Behavior", Computer, Vol. 9, No. 11,

IEEE, November 1976, pp 14 - 20.

Describes Belady's Lifetime Function, one of whose parameters can be used

to gauge the locality of reference.  Also contains plots of mean working set size

and page fault range vs. window size.

* J. Spirn, and P. Denning, "Experiments with Program Locality", Proceedings of the

AFIPS Fall Joint Computer Conference, Vol. 41, 1972, pp 611 - 621.

Discusses two types of locality models:  the intrinsic model (assumes

locality results from a program's internal properties) and the extrinsic model

(defines locality from observable properties reference strings).  Proposes

experimental criteria to test the ability of extrinsic measurements to reflect the

current intrinsic locality
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A 2 Availability of Source Code and Traces

The source code and trace data from this study is available for further research.  Please

contact the Department of Computer Science, Brigham Young University, Provo, UT

84602.
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ABSTRACT

Modern computer systems are designed to exploit locality of reference to improve

performance without increasing cost.  Due to the recent adoption of the object-oriented

paradigm, the locality characteristics of object-oriented programs have not been firmly

established.  This study estimates the locality of an object-oriented C++ program by

comparing its cache performance with that of a C program performing the same task.  The

C++ program was found to have a significantly higher cache miss rate.  Decreased locality

indicates decreased performance.  This effect will become more pronounced as processor

speeds increase.
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